US009329960B2

a2 United States Patent 10) Patent No.: US 9,329,960 B2
Chattopadhyay et al. 45) Date of Patent: May 3, 2016
(54) METHODS, SYSTEMS, AND COMPUTER 8,204,497 B2* 6/2012 Huber HO4L 12/2697
READABLE MEDIA FOR UTILIZING . | Pes
ABSTRACTED USER-DEFINED DATA TO 8854961 BL* 10/2014 Cohent .o HOAT S8
CONDUCT NETWORK PROTOCOL TESTING 2002/0128811 Al* 9/2002 Hoffmann HO4L 12/2697
H © Txi 703/21
(71) Applicant: Ixia, Calabasas, CA (US) 2008/0294948 Al* 11/2008 Forsbach HOAL 1/24
(72) Inventors: Tirtha Kumar Chattopadhyay, West) 714/704
Bengal (IN); Angshuman Dasgupta, 2009/0016227 AL1* 172009 Lin v H043L73/32/ 451(1)
Kolkata (IN) 2013/0198569 Al* 82013 FEidelman GOGF 11/2268
(73) Assignee: IXIA, Calabasas, CA (US) 714/32
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 136 days. “Wireshark,” Wikipedia, http://en.wikipedia.org/wikiWireshark, pp.
(21) Appl. No.: 14/311,258 15 (Aug. 7, 2014).
(22) Filed: Jun. 21, 2014 * cited by examiner
(65) Prior Publication Data
US 2015/0370675 A1 Dec. 24, 2015 Primary Examiner —Nadeem Igbal
(74) Attorney, Agent, or Firm — Jenkins, Wilson, Taylor &
(51) Int.ClL Hunt, P.A.
GO6F 11263 (2006.01)
HO4L 12/24 (2006.01)
Ho4L 12/26 (2006.01) (57) ABSTRACT
(52) US.CL) Methods, systems and computer readable media for utilizing
CPC . GO6F 11/263 (2013'01)’ HO4L 41/145 abstracted user-defined data to conduct network protocol test-
. . (.2013'01)’ HO4L 43/18 (2013.01) ing are disclosed. According to one aspect, the subject matter
(58) Field of Classification Search described herein comprises a method that includes receiving,
CPC GO6F 11/263; GO6F 11/2268; HO4L by a test system abstraction (TSA) module from a device
12/2697; HO4L 12/26; HOAL 43/18; HOAL under test (DUT), a packet containing a command that is
41/145; HOAL 12/24; HOAL 43/0852; HOAL associated with a native protocol and converting the com-
43/0864; HOAL 43/0888; HO4L 43/50; HO4L mand included in the received packet into a TSA protocol
o) 43/065 command. The method further includes processing the TSA
See application file for complete search history. protocol command at a TSA engine module that is provi-
. sioned with at least one instruction sequence enabling the
(56) References Cited

U.S. PATENT DOCUMENTS

5,937,165 A * 81999 Schwaller HO4L 12/2697
709/224
6,914,892 B1* 7/2005 Cooper HO4L 12/2697
370/338

100

TSA engine module to emulate a network test device and
generating, by the TSA engine module, a TSA protocol com-
mand response in accordance with protocol behavior speci-
fied by the at least one instruction sequence.

20 Claims, 7 Drawing Sheets

N
W2 TRAFFIC EMULATION DEVICE
AN EMULATED NETWORK DEVICE
108
ABSTRACTION 77 ™
MODULE ABSTRACTION
106 ENGINE
112
\
but PROTOCOL LIBRARY
S N e e Y
110 INSTRUCTION
SEQUENCE(S)
L 114
,/f
fr——] 124 i
‘\\ SEQUENCE DESIGNER L
. {_ SEQUENCE DESIGNER |
104 e

120
PROCESSOR T

. 126
MEMORY -

“ABPLICATION
MONITOR

US 9,329,960 B2

Sheet 1 of 7

May 3, 2016

U.S. Patent

191

8TT
YOLINOWN

NOLIVII1ddV

it
(S)3DN3IND3S
NOILDNYISNI

433
3INIONG
NOILOVYHISaY

80T
301A3A YYOMLIN GILVININT

AJOWIIN

9l

H0OSS300Hd
ONPL

4INDOISIA IDNINDAS
el

01T
AYV¥8111000.104d

90T
IINAON
NOILLOVY1SaY

30IA3A NOIIVINING J144VYHL

0L

c0i

1nda

00t

US 9,329,960 B2

Sheet 2 of 7

May 3, 2016

U.S. Patent

80¢

¢ 9

4

SSHIPIY VOOUIST e

SRR LY

SO PRV e

B0 e

(084 6 S 1L o

AL RO v

S5 g

RS

{SIRP0] ERT (10] e

A 3 g ¢

i) DR e

WO s

i

bl O

G104 e

seubissionoe

ss31ppy 15301 Ao E

SERBLY SUROS HPONL
UIRIPON % v
{Buppom] snenbg

ey

e 1
1908F PUIS
e pues, O

e

fioy
GORRIIBON % |
INDaAs &
ssop 0,8
e puss

oeg puEs WMM\

U0 a1y
e T

sopmnin g el
wdn ey e i plas

seubisep
aouenbeg

& wER

spmag

JouuoW 1 Uy %w :

wopembiioy @

US 9,329,960 B2

Sheet 3 of 7

May 3, 2016

U.S. Patent

€ 'Ol

syevoed
paupspald

dnous A

dovt Bt ¢
THUOIND
d98
sased (48 &
vEIODRd d8 &
£HS0Rd 048 B
ZEed (48 O
THHR] 48

LK 458

- e

SO R v

el B

WEGO &40

- HRC) IOH *

c0g

US 9,329,960 B2

Sheet 4 of 7

May 3, 2016

U.S. Patent

¥ 'Ol

NJIeySalipn paploduy

e B30I D)

S e A

,ﬁmm m.éamo

ALON 08
L R
el . 7 B B

FivO4n 408
L T R—————

ARy RIBUSDIA

Tyl dBG < Fuileiee 09 I [ESORITTET | STORITZ6T | [816158] 07
sB2SsaN IANVAIITN £ dOF |STOROTIRT | E£0B9T 76T | £€4295°8] 61
Oyl G < e 08 AL |EE090T 6T ISTOROTZ6T | 16/6558) 91
sbessepy 3[vwadn| 81T dD8 ST 0E9T 26T | EO0R0T 26T |0ip6rSe| L1
SOESSE IATWAID | T 4D |EC0E0TZ6T |STUROTT6T | 6PThPeel 91
D asiele < dBq [} dOL|STOSSTTET | ECUROTZAT | I0TEPSR] ST
Dyl dba < yuyaies 09 dOL|EE0UBITTET ST UBIT Z6T | JEBEPER] +1
SDESSS INWAID! £L 498 |STOBTI6T | EC0BITTRT | 0022VER] €1
aDesso ATV 43T |44 408 ECORTTET | STUBITZ6T |STT8EER| 2T
Dy dba < yuerER 09 dDL|EEOHOTERT ST OROT AT | £208EE'E] 1T
abessapy N3O €8 408 | 5T 0891761 | EC0ROT 6T | £66258°8] OT
oV ulEies < 60g 09 dDL|STOBYTZ6T | EE0BIT 6T | IPOR0LE! 6
abessapy N340 £8 A0 |EE0BITIET {STURITZ6T | Zb0r00'8] €
Dyl d6a < yumer 09 dOL[EEDRRTTET ST ORIT ZRT | pobEO0]| £
AS] el < by 03 dD1LISTOB9TU6T [EE 0BT T6T 6065008 O
AS) dba < yuyeiee v dDL|EE089T 76T [STOROTZ6T | L466664] ¢
] joauoa-dit « dbg 09 4L STURSTZ6T | ECUBOTZ6T | LS0800G] ¢
1dBg < jonuco>-dy] dDL|ECOHOTTET |STOROTZ6T | 22p0000] ¢
1dBa < jonuoc-aid 09 421 EET9ST 6T |STDBOTZ6T | TE00000] 2
Tioauos-dhe « dbg i dIL|STORSTZET [ECUEITZ6T|0000000] 1
oy pbuay” [ooDI0id | UDRRUNSa(] BUN0G =t

= BAIIVATRY DY wmmmeeemmmmesmmmesemsmn
NI R

- A 08

< oo (G RORUUOD DL e W

444

ufisa ¢ m&mé

J3ppey

US 9,329,960 B2

Sheet S of 7

May 3, 2016

U.S. Patent

809

S DOl

JONINDIS NOILIONYLSNI
INO 1SV3T 1V 3HL A9 A314103dS HOIAVH3IE
T020.104d HLIM 3ONVAY0I2V NI 3SNOdS3H
ONVIAINOD T020108d VS1 V 31VHINID

920G

IONIND3IS NOILONYLSNI INO 1SV
1V HLIM G3INOISIAOYd SI IVHL ITNAOW 3INIDON3I
VS1V 1V AONVINIAIOD T020104d VS1 SS3004d

¥0§

ANVININOD T020.104d
VSL OLNI 13X0Vd 7020104d IALLYN LHIANOD

1531 ¥3aNN
FOIA3IA INOHA 13XIVd 102010dd IALLVN JAIFO3Y

US 9,329,960 B2

Sheet 6 of 7

May 3, 2016

U.S. Patent

9 'OI4
AYOWIIN
929
40OSS3004d
819 029
HOLINOW
NOILYDI1ddV
VEIN

v19
1d14ds
ONIYOLINOW

719
INIHOVIN
1V1S

809
FINTOW DNIYOLINOW

—1

0€9

§ 43INOISIA IDNIND3IS
co

019
AYVHEI1 10001044

909
FJINAOW
NOLLOVY1SaY

342IA3A NOILLVINIAIEG J144VdL

709

c09

1nd

009

U.S. Patent May 3, 2016 Sheet 7 of 7 US 9,329,960 B2

&
O = s O =2
=R <K 2K
L
=

708

FIG. 7

PROCESSOR
702
STORAGE
706

US 9,329,960 B2

1

METHODS, SYSTEMS, AND COMPUTER
READABLE MEDIA FOR UTILIZING
ABSTRACTED USER-DEFINED DATA TO
CONDUCT NETWORK PROTOCOL TESTING

TECHNICAL FIELD

The subject matter described herein relates to testing net-
work systems and devices. More particularly, the subject
matter described herein relates to systems, methods, and
computer readable media for utilizing abstracted user-defined
data to conduct network protocol testing.

BACKGROUND

At present, the protocol logic of most network test appli-
cations are implemented using compiled programming lan-
guages, such as C. Notably, these network test applications
are developed based on specific needs that require the support
of specific application or communication protocols. More-
over, the protocol logic may be embedded in the network test
application in such a manner that requires significant and
continuous development efforts for each additional protocol
to be supported and tested. More specifically, since modern
networks are required to utilize and accommodate a continu-
ously increasing number of protocols, network administra-
tors are repeatedly conducting expensive development cycles
that are directed to constructing the required network test
applications, each of which is based in a separately compiled
and/or scripted language environment.

Accordingly, there exists a need for systems, methods, and
computer readable media for utilizing abstracted user-defined
data to conduct network protocol testing.

SUMMARY

Methods, systems and computer readable media for utiliz-
ing abstracted user-defined data to conduct network protocol
testing are disclosed. According to one aspect, the subject
matter described herein comprises a method that includes a
method that includes receiving, by a test system abstraction
(TSA) module from a device under test (DUT), a packet
containing a command that is associated with a native proto-
col and converting the command included in the received
packet into a TSA protocol command. The method further
includes processing the TSA protocol command at a TSA
engine module that is provisioned with at least one instruction
sequence enabling the TSA engine module to emulate a net-
work test device and generating, by the TSA engine module,
a TSA protocol command response in accordance with pro-
tocol behavior specified by the at least one instruction
sequence.

The subject matter described herein may be implemented
in hardware, software, firmware, or any combination thereof.
As such, the terms “function”, “node” or “module” as used
herein refer to hardware, which may also include software
and/or firmware components, for implementing the feature
being described. In one exemplary implementation, the sub-
ject matter described herein may be implemented using a
non-transitory computer readable medium having stored
thereon computer executable instructions that when executed
by the processor of a computer control the computer to per-
form steps. Exemplary computer readable media suitable for
implementing the subject matter described herein include
non-transitory computer-readable media, such as disk
memory devices, chip memory devices, programmable logic
devices, and application specific integrated circuits. In addi-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion, a computer readable medium that implements the sub-
jectmatter described herein may be located on a single device
or computing platform or may be distributed across multiple
devices or computing platforms.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter described herein will now be explained
with reference to the accompanying drawings of which:

FIG. 1 is a block diagram illustrating an exemplary system
for utilizing abstracted user-defined data to conduct network
protocol testing according to an embodiment of the subject
matter described herein;

FIG. 2 is an illustration of an exemplary graphical user
interface display for generating native protocol instruction
sequences using a packet library according to an embodiment
of the subject matter described herein;

FIG. 3 is an illustration of an exemplary graphical user
interface for generating native protocol instruction sequences
using imported packet capture data according to an embodi-
ment of the subject matter described herein;

FIG. 4 is an illustration of an exemplary graphical user
interface display for managing native protocol instruction
sequences according to an embodiment of the subject matter
described herein;

FIG. 5 is a flow chart illustrating an exemplary process for
utilizing abstracted user-defined data to conduct network pro-
tocol testing according to an embodiment of the subject mat-
ter described herein;

FIG. 6 is a block diagram illustrating an exemplary system
for performing data-driven network protocol monitoring
according to an embodiment of the subject matter described
herein; and

FIG. 7 is a block diagram of a general purpose computer
system suitable for use in performing the functions described
herein.

DETAILED DESCRIPTION

The subject matter described herein relates to systems,
methods, and computer readable media for utilizing
abstracted user-defined data to conduct network protocol test-
ing. Reference will now be made in detail to exemplary
embodiments of the presently disclosed subject matter,
examples of which are illustrated in the accompanying draw-
ings. Wherever possible, the same reference numbers will be
used throughout the drawings to refer to the same or like parts.
Various embodiments of the present subject matter are dis-
closed and described herein.

In some embodiments, a network test system may be con-
figured to utilize abstracted user-defined data, such as test
system abstracted (TSA) instruction sequences, to create an
emulated network device that is used to test at least one device
under test (DUT). Notably, the generated emulated network
device may be configured such that the emulated network
device is capable of being re-used to test additional DUTs, all
of which may employ different communication protocols
and/or application protocols. For instance, a test network
administrator or other user may design a specific protocol
behavior associated with a particular emulated network
device by generating abstracted user-defined data (e.g., TSA
instruction sequence) that is ultimately provisioned into an
abstraction engine module contained within the emulated
network device. In some embodiments, the abstraction
engine module may be configured to process the abstracted
user-defined data and subsequently function in accordance
with the specified protocol behavior at runtime. Specifically,

US 9,329,960 B2

3

the abstracted user-defined data may enable the abstraction
engine module to send and/or receive specific network pack-
ets, modify attributes of received packets, and re-send packets
in a manner similar to other network test (or management)
applications per the designed protocol behavior.

FIG. 1 is a block diagram illustrating an exemplary archi-
tecture for a test simulation system 100 according to an
embodiment of the subject matter described herein. Referring
to FIG. 1, system 100 includes a traffic emulation device 102
(e.g., a traffic emulator) that is communicatively connected to
a DUT 104, or in some instances, a system under test (SUT).
In some embodiments, DUT 104 may include a serving gate-
way (SGW), a packet data network gateway (PGW), a fire-
wall device, a router device, or any device or system that may
benefit from high throughput traffic simulation testing. In
some embodiments, DUT 104 may be configured to commu-
nicate with traffic emulation device 102 via a native commu-
nication protocol. DUT 104 may also be communicatively
connected to traffic emulation device 102 via a wired or
wireless connection that facilitates the transfer of any packet
traffic between the two devices. In some embodiments, traffic
emulation device 102 may be communicatively connected to
DUT 104 via a border gateway protocol (BGP) and/or trans-
mission control protocol (TCP) connection. In addition, traf-
fic emulation device 102 may send packet data to DUT 104
via a transmission test port (not shown) and may receive
packet data from DUT 104 via a receive test port (not shown).
In some embodiments, traffic emulation device 102 may
include a hardware-based device or equipment configured to
generate and send packet traffic to DUT 104 for load testing
purposes. Moreover, traffic emulation device 102 may host
and/or support a test system abstraction (TSA) module 106
and an emulated network device 108, which includes a TSA
engine module 112. In some embodiments, abstraction mod-
ule 106 may be utilized to perform a number of translation
and/or conversion procedures on the native protocol traffic
received from DUT 104. In some embodiments, modules 106
and 112 may cooperatively perform a number of processing
functions within traffic emulation device 102 prior to sending
any response traffic to DUT 104. The aforementioned pro-
cessing functions performed via modules 106 and 112 are
described in greater detail below. In some embodiments, traf-
fic emulation device 102 may also include an application
monitor module 118 that may comprise a database element
for collecting and storing output activity of a network test
application executed by emulated network device 108. Appli-
cation monitor module 118 may also comprise a graphical
user interface element that is used to display the output activ-
ity to a user. In some embodiments, the collected output
activity may include recorded packet capture information.

In some embodiments, traffic emulation device 102 may
include a processor 120. Processor 120 may include a central
processing unit (CPU), a microcontroller, or any other hard-
ware based processing unit that configured to manage and
execute modules 106 and 112 in traffic emulation device 102.
Processor 120 may also be configured to access memory 126
and various specialized units, circuits, software and interfaces
for providing the functionality and features described herein.
In some embodiments, traffic emulation device 102 may be
designated to function as either a client entity or a server
entity. In some embodiments, memory 126 can include ran-
dom access memory (RAM), read only memory (ROM), opti-
cal read/write memory, cache memory, magnetic read/write
memory, flash memory, or any other non-transitory computer
readable medium. In some embodiments, processor 120 and
memory 126 be used to execute and manage the operation of
abstraction module 106 and abstraction engine module 112.

10

15

20

25

30

35

40

45

50

55

4

In some embodiments, a user may provision TSA engine
module 112 with user-defined data, such as at least one
instruction sequence which enables TSA engine module 112
to emulate a network test device. Specifically, TSA engine
module 112 may be configured to utilize an abstracted
instruction sequence to develop and operate a “generic” net-
work test application (e.g., firmware) that may be used to test
packet traffic associated with any network protocol type.
Prior to forwarding TSA engine module 112 with abstracted
packet traffic from a DUT or SUT, abstraction module 106
needs to generate an abstracted instruction sequence that is
recognized by TSA engine module 112. The resulting
abstracted instruction sequence utilized by TSA engine mod-
ule 112 may be used to establish and/or control a pre-com-
piled network test application that is executed by emulated
network device 108.

In some embodiments, an instruction sequence comprises
a plurality of instructions arranged in a specified order or
sequence. An instruction sequence can be designed in a man-
ner that defines the expected protocol behavior of emulated
network device 108 during the testing of DUT 104 or an SUT.
The native protocol instruction data used to generate an
instruction sequence can be represented in many different
forms, including data that is converted and/or subsequently
used. For example, captured packet data (e.g., Wireshark®
captured data) can be converted and used by the disclosed
subject matter. As used herein, a native protocol instruction
comprises an underlying command or message that is estab-
lished in accordance with a particular protocol utilized by the
DUT or SUT. Exemplary native protocol instructions include,
but not limited to, a Send

Packet instruction (e.g., used for designing and sending a
packet), a Modify Packet instruction (e.g., used to modify
received packets if the instruction sequence is designed to
receive packets using a filter), a Transmission Control Proto-
col (TCP) Operation Start instruction (e.g., used to a initiate a
TCP session), a TCP Operation End instruction (e.g., used to
a terminate a TCP session), a Wait instruction (e.g., used to
delay the execution of subsequent instructions at a specific
time or after a predefined duration), a Log instruction (e.g.,
used to record monitored activities to a log), a Calculate
instruction, a Send Statistic instruction, and the like.

In some embodiments, the instruction sequence may also
include either a blocking instruction sequence or a non-block-
ing instruction sequence. For example, a blocking sequence
comprise a sequence in which emulated network device 108
waits for the execution of an abstracted instruction sequence
to complete before conducting any further instruction
sequence processing. Notably, this course of action is
required in order to conduct stateful behavior. Similarly, the
blocking instruction sequence may also contain a filter that
may include criteria that can be used to identify certain pack-
ets. In some embodiments, an instruction sequence may also
contain one or more nested sequences depending on the
requirement of the designed protocol behavior.

In some embodiments, a user may utilize a sequence
designer module 124 to design and manage the aforemen-
tioned instruction sequences. In some embodiments,
sequence designer module 124 may enable a user, via a
graphical user interface (GUI), to design and/or modity the
packets included in an instruction sequence. Specifically, a
GUI associated with sequence designer module 124 enables a
user to modify such things as the header content and the
payload content of the packets individually or in an existing
instruction sequence. FIG. 2 depicts a screen display of an
exemplary GUI 202 that may be used to design packets of an
instruction sequence associate with an initial native commu-

US 9,329,960 B2

5

nication or application protocol (e.g., a non-abstracted pro-
tocol). In some embodiments, GUI 202 may include a
sequence designer toolbar 204 that can be used to perform a
number of actions/functions related to the design and man-
agement of an instruction sequence. In some embodiments,
GUI 202 may also include a sequence designer interface 206
that may be used to display and/or select various instructions
included in one or more sequences. For example, sequence
designer interface 206 may be utilized to select a Send Packet
instruction, the details of which are displayed via packet
designer interface 208. Notably, packet designer interface
208 can be utilized to design and/or modify the header content
and the payload content of a packet by editing data fields of a
selected packet as shown in FIG. 2.

In some embodiments, sequence designer module 124 may
also be configured to receive a plurality of packets associated
with a particular non-abstracted protocol. Notably, a user may
provide sequence designer module 124 with a large number
of packets, such as from a packet capture application or a
saved configuration file, in order to generate a sequence
instruction flow via a GUI associated with traffic emulation
device 102. For example, FI1G. 3 depicts a screen display of an
exemplary GUI 302 that may be used to design a non-ab-
stracted sequence instruction flow. In some embodiments,
GUI 302 may include a ladder diagram interface 304 and a
packet library interface 306. A user may utilize packet library
interface 306 to select at least one predefined packet from a
plurality of predefined packets (e.g., saved configuration
file(s)) to be applied to ladder diagram interface 304. For
example, a user may assign one or more packets to ladder
diagram interface 304 by selecting said one or more packets
displayed in packet library interface 306, which may be con-
figured to store and manage packets associated with a number
of different communication protocols (e.g., bidirectional for-
warding detection (BFD) protocol, border gateway protocol
(BGP), link aggregation control protocol (LACP), etc.).
Packet library interface 306 may also allow a user to create
folders to store various packets together irrespective of a
packet’s associated communication protocol.

After selecting the one or more packets to be included in an
instruction sequence, a user may the “drag” the selected pack-
et(s) from packet library interface 306 to ladder diagram
interface 302 via GUI 302. Specifically, a copy of a previously
used and/or previously saved packet may be selected from
packet library interface 306 and strategically inserted into the
non-abstracted instruction sequence flow (e.g., designed dia-
log flow) depicted in ladder diagram interface 304. After the
instruction sequence flow in ladder diagram interface 304 is
constructed, abstraction module 106 may utilize protocol
library module 110 to convert or translate the instruction
sequence into an abstracted instruction sequence that is rec-
ognizable by abstraction engine module 112. For example,
protocol library module 110 may include a database structure
that establishes mappings between instructions, messages,
and commands associated with various communication pro-
tocols that are native to DUT 104 (and other DUTs, SUTs,
etc.) and the corresponding instructions, messages, and com-
mands associated with the TSA protocol recognized by
abstraction engine module 112. For example, a TSA protocol
“WAIT” command may be mapped to each of a plurality of
non-abstracted “WAIT” commands in different protocols.

After processing at abstraction module 106 is completed,
the non-abstraction instruction sequence may be forwarded to
TSA engine module 112 for execution (as shown as instruc-
tion sequence 114 in FIG. 1).

In some embodiments, sequence designer module 124 may
be configured to generate one or more non-abstracted instruc-

20

25

40

45

65

6

tion sequence flows from a plurality of imported packets. For
example, sequence designer module 124 may be adapted to
receive a saved configuration file or an imported packet cap-
ture file. Notably, a user may utilize GUI 402 to facilitate the
importing of a packet capture file, such as a WIRESHARK®
capture file. For example, interface window 404 depicts the
contents of an exemplary WIRESHARK® capture file which
may be provided in part or in its entirety to sequence designer
module 124. Sequence designer module 124 may utilize pro-
tocol library module 110 (as described above) to generate a
TSA protocol command for each of the selected packets from
the imported packet capture file (and dragged to the ladder
diagram interface).

Regardless of the manner in which the instruction
sequence is generated, sequence designer module 124 either
forwards the non-abstraction sequence to TSA engine mod-
ule 112 for immediate use or to memory 126 for storage and
subsequent use. If forwarded to TSA engine module 112, the
abstracted instruction sequence may be utilized to emulate
one or more network devices for the purposes of a test simu-
lation. For example, TSA engine module 112 may be oper-
able to receive and interpret the received abstracted instruc-
tion sequence 114 and subsequently execute a state change
that is based on the protocol behavior set forth by instruction
sequence 114. In some embodiments, TSA engine module
may utilize instruction sequence 114 to formulate a generic or
abstract network test application (which is executable by TSA
engine module 112 and/or processor 120) that comprises
application logic data that defines the aforementioned proto-
col behavior.

Notably, the disclosed subject matter permits a single
“emulated network device” to be readily re-used to test mul-
tiple DUTs that employ different communication protocols.
In some embodiments, TSA engine module 112 of emulated
network device 108 may be implemented as a table-driven,
highly configurable state machine. Notably, the state machine
framework can be used to rapidly implement a wide variety of
different network device emulations.

Once emulated network device 108 is provisioned with an
abstracted instruction sequence 114 (and/or a network test
application based on abstracted instruction sequence 114),
emulated network device 108 may be in a condition to con-
duct traffic simulation tests with DUT 104 or an SUT. In some
embodiments, DUT 104 may be configured to generate a
plurality of native protocol packets as the subject of a traffic
simulation test. Notably, one or more of the generated packets
may include a command or message associated with a par-
ticular communication protocol or application protocol (e.g.,
protocol_x) that is native to DUT 104. Upon receiving a
native protocol packet from DUT 104 via a local test port,
traffic emulation device 102 may be configured to direct the
received native protocol packet to abstraction module 106 for
processing.

As described above, abstraction module 106 may include a
protocol library module 110, which can include one or more
database structures that establishes a plurality of conversion
and/or translation rules between a generic TSA command set
and one or more predefined communication protocol com-
mand sets. For example, protocol library module 110 may
define mappings between commands associated with a par-
ticular communication protocol (e.g., protocol_x) and corre-
sponding TSA protocol commands. Although only a single
protocol library module 110 is shown, additional protocol
library modules supporting and/or hosting additional appli-
cation and communication protocols may be used without
departing from the scope of the disclosed subject matter.
Specifically, protocol library modules 110 may include a

US 9,329,960 B2

7

plurality of database structures configured to support an
unlimited number of Layer 2-3 and Layer 4-7 communication
protocols. For example, abstraction module 106 may utilize
protocol library module 110 to access stored information
associated with a received native “protocol_x" packet upon
receiving said packet. In some embodiments, protocol library
module 110 can be configured to store certain information
associated with the native “protocol_x” packet and subse-
quently generate (and/or convert to) an associated
“abstracted” instruction or command, such as a TSA protocol
command. In one embodiment, the abstracted instruction
may be packetized and forwarded to emulated network device
108. By functioning in this manner, abstraction module 106
effectively translates or converts the aforementioned received
native “protocol_x" packets into the abstracted commands
that TSA engine module 112 can recognize. In some embodi-
ments, abstraction module 106 may convert a native protocol
packet into an equivalent abstracted packet that contains a
TSA protocol command and/or message.

In some embodiments, the abstracted packet containing the
TSA protocol command is then forwarded by abstraction
module 106 to TSA engine module 112 in emulated network
device 108. In some embodiments, TSA engine module 112
may comprise a state machine, such as a table-driven test
sequence state machine. As used herein, a table-driven test
sequence state machine refers to a state machine that utilizes
a database structure that establishes mappings between pre-
defined protocol behavior actions/responses and exemplary
TSA protocol commands/messages. For example, TSA
engine module 112 may be configured to execute a specific
action in response to receiving a specific TSA protocol com-
mand. In some embodiments, TSA engine module 112 can be
configured to utilize instruction sequence 114 to emulate one
or more network devices for the purposes of the test simula-
tion.

During the processing of a received TSA protocol com-
mand, the resulting change of state (i.e., in accordance with
protocol behavior) may trigger TSA engine module 112 to
generate a TSA protocol command response. The TSA pro-
tocol command response may be communicated to abstrac-
tion module 106 where the response is translated and/or con-
verted using protocol library module 110 in a manner
described above. For example, abstraction module 106 may
utilize protocol library module 110 in order to convert and
packetize the abstracted TSA protocol command received
from abstraction engine module 112 into an equivalent com-
mand and/or message associated with the original protocol
(e.g., protocol_x) native to DUT 104. A packet containing the
native “protocol_x" command may then be communicated by
abstraction module 106 to DUT 104. In some embodiments,
it is appreciated that abstraction module 106 may send the
native protocol packet to a different DUT (as opposed to DUT
104).

In some embodiments, traffic emulation device 102 may
initiate the test of DUT 104. For example, TSA engine mod-
ule 112 may be configured to generate and/or packetizea TSA
protocol command that includes a command or message that
is recognizable (e.g., compatible) to abstraction module 106.
In some embodiments, the TSA protocol command can be
generated based on the protocol behavior that is defined by
the instruction sequence(s) 114 utilized by abstraction engine
module 112. In some embodiments, instruction sequence 114
includes a sequence of test rules that are specified in an
associated table-driven data structure that may be hosted by a
rules database (not shown) in emulated network device 108.
The TSA protocol command may be communicated to
abstraction module 106 (e.g., via a packet) where the

5

10

15

20

25

30

35

40

45

50

55

60

65

8

abstracted command is translated and/or converted using pro-
tocol library module 110 in a manner described above. For
example, abstraction module 106 may utilize protocol library
module 110 to convert the TSA protocol command into an
equivalent command (e.g., a protocol_x command) associ-
ated with a native protocol that is recognized by DUT 104. In
some embodiments, the recognizable command is included in
anative protocol packet that is communicated to DUT 104 via
a test port associated with traffic emulation device 102.

In some embodiments, DUT 104 may subsequently pro-
cess the received packet and may respond with its own native
protocol packet, which contains a native protocol-based com-
mand response. This native protocol packet generated by
DUT 104 can be received via a test port of traffic emulation
device 102. From the test port, the native protocol packet can
be forwarded to abstraction module 106 for processing. In
some embodiments, abstraction module 106 may utilize pro-
tocol library module 110 to subsequently generate and/or
packetize an associated TSA protocol command or message.
Thus, abstraction module 106 is configured to effectively
translate and/or convert the contents of the native protocol
packet into an abstracted packet containing an equivalent
TSA protocol command and/or message. The TSA protocol
command may then be sent to emulated network device 108.
In some embodiments, the TSA protocol command may be
subsequently processed by TSA engine module 112. For
example, the TSA protocol command processed by TSA
engine module 112 may generally trigger a state change that
is based on the state rules contained in a rules database (not
shown) of TSA engine module 112.

FIG. 5 illustrates an exemplary method 500 for utilizing
abstracted user-defined data to conduct network protocol test-
ing. In step 502, one or more native protocol packets are
received from a DUT or SUT. Using FIG. 1 as an additional
reference, a plurality of packets associated with a protocol
(e.g., protocol_x) native to DUT 104 is received, via a test
port connection, by traffic emulation device 102. In some
embodiments, each of the plurality of packets may include a
command or message that requires processing by traffic emu-
lation device 102. Upon receiving the packets from DUT 104,
traffic emulation device 102 may be configured to direct the
packets to abstraction module 106 to initiate the packet pro-
cessing needed to conduct a network test.

In step 504, the received packet is converted into a TSA
protocol command. In some embodiments, abstraction mod-
ule 106 utilizes protocol library module 110 to convert (and/
or translate) the command included in the received native
protocol packet to a TSA protocol command that is recogniz-
able by TSA engine module 112.

In step 506, the TSA protocol command is processed at a
TSA engine module that is provisioned with at least one
instruction sequence enabling the TSA engine module to
emulate a network test device. In some embodiments, TSA
engine module 112 processes the TSA protocol command
sent by abstraction module 106 using a network test applica-
tion that is based on instruction sequence 114.

In step 508, the TSA engine module generates a TSA
protocol command response in accordance with protocol
behavior specified by the at least one instruction sequence. In
response to the processing conducted in step 506, TSA engine
module 112 may generate a TSA protocol command response
as deemed appropriate by the protocol behavior set forth by
the network test application generated by at least one instruc-
tion sequence. Notably, TSA engine module 112 is config-
ured in such a manner to process identical TSA protocol
commands in the same manner. For example, a second TSA
protocol command that is converted from a second command

US 9,329,960 B2

9

associated with a second native protocol command from a
second DUT would be processed in the same manner as the
original TSA protocol command (i.e., since the TSA protocol
command is identical to the second TS A protocol command).

It will also be appreciated that exemplary method 500 is for
illustrative purposes and that different and/or additional
actions may be used. It will also be appreciated that various
actions described herein may occur in a different order or
sequence.

FIG. 6 is a block diagram illustrating an exemplary system
600 for performing data-driven network protocol monitoring.
In some embodiments, a test system device 602 may include
a monitoring embodiment test system that is configured to
initiate a test of a DUT 604. Unless otherwise specified or
defined, the components included in test system device 602
are capable of performing the same functions as the compo-
nents in traffic emulation device 202 shown in FIG. 2. In one
embodiment as depicted in FIG. 6, DUT 604 generates a
packet that includes a command or message associated with a
communication protocol or application protocol (e.g., proto-
col_x) that is native to DUT 604. The native protocol_x
packet is received via a monitoring port (not shown) of test
system device 602. From the aforementioned monitoring
port, the native protocol_x packet is forwarded to an abstrac-
tion module 606 for processing.

In some embodiments, abstraction module 606 may
include a protocol library module 610, which is configured to
store information that maps commands and messages associ-
ated with the native protocol (among other protocols) and
TSA protocol commands. Using the predefined mappings
listed protocol library module 610, abstraction module 606
may be configured to subsequently generate an associated
TSA protocol command. Such an action thereby essentially
translates and/or converts the received native protocol_x
packet (or at least the command/message contents within)
into an equivalent TSA protocol command.

In some embodiments, the TSA protocol command is sent
to an internal monitoring state machine module 612 associ-
ated with monitoring module 608. In some embodiments,
state machine module 612 may comprise a monitoring script
614 or algorithm that is configured to generate abstracted
instructions in response to receiving TSA commands. For
example, state machine module 612 can be readily re-config-
ured to support the performance of different actions in
response to the detection of certain events or states caused by
the receipt of abstracted instructions from abstraction module
606. Specifically, state machine module 612 may be config-
ured to receive and interpret a TSA protocol command and to
execute a state change that is based on the state rules provided
by monitoring script 614. In some embodiments, a state
change may cause state machine module 612 to perform an
action, such as generating and transmitting an audible and/or
visible alarm message, alert message, and/or notification
message to some Ul utilized by a user (e.g., which may be
executed by monitoring event action module 630). In others
embodiments, the action may involve system 602 generating
and transmitting a control message to an element in the moni-
tored network (e.g., DUT 604) such as a router, or a firewall,
or other network device.

In FIG. 6, the resulting change of state may also cause a
second TSA protocol command to be generated by state
machine module 612. The second TSA protocol command
may be communicated to abstraction module 606 where it is
translated via protocol library module 610 in a similar manner
described above. For example, abstraction module 606 may
be configured to convert the received TSA protocol command
into a packet containing an equivalent native protocol_x com-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

mand or message that is recognizable by DUT 604. After the
conversion is performed, abstraction module 606 may be
configured to send the native protocol_x packet to DUT 604.
In some embodiments, it is appreciated that abstraction mod-
ule 606 may send the native protocol_x packet to a different
DUT.
FIG. 7 depicts a high level block diagram of a general
purpose computer system suitable for use in performing the
functions described herein. As depicted in FIG. 4, system 700
comprises a processor 702, a memory 704, a storage device
706, and communicatively connected viaa system bus 708. In
some embodiments, processor 702 can comprise can com-
prise a microprocessor, central processing unit (CPU), or any
other like hardware based processing unit. In some embodi-
ments, an abstraction module 710 and abstraction engine
module 712 can be stored in memory 704, which can com-
prise random access memory (RAM), read only memory
(ROM), optical read/write memory, cache memory, magnetic
read/write memory, flash memory, or any other non-transi-
tory computer readable medium. In some embodiments, pro-
cessor 702 and memory 704 can be used to execute and
manage the operation of modules 710 and 712. In some
embodiments, storage device 706 can comprise any storage
medium or storage unit that is configured to store data acces-
sible by processor 702 via system bus 708. Exemplary storage
devices can comprise one or more local databases hosted by
system 700.
It will be understood that various details of the subject
matter described herein may be changed without departing
from the scope of the subject matter described herein. Fur-
thermore, the foregoing description is for the purpose of
illustration only, and not for the purpose of limitation, as the
subject matter described herein is defined by the claims as set
forth hereinafter.
What is claimed is:
1. A method for utilizing abstracted user-defined data to
conduct network protocol testing, the method comprising:
receiving, by a test system abstraction (TSA) module from
a device under test (DUT), a packet containing a com-
mand that is associated with a native protocol;

converting the command included in the received packet
into a TSA protocol command;

processing the TSA protocol command at a TSA engine

module that is provisioned with at least one instruction
sequence enabling the TSA engine module to emulate a
network test device; and

generating, by the TSA engine module, a TSA protocol

command response in accordance with protocol behav-
ior specified by the at least one instruction sequence.

2. The method of claim 1 comprising converting, by the
TSA module, the TSA protocol command response into a
response command associated with the native protocol.

3. The method of claim 1 wherein the at least one instruc-
tion sequence is provisioned on the TSA engine module via
the TSA module.

4. The method of claim 1 wherein the at least one instruc-
tion sequence is used by the TS A engine to generate a network
test application that establishes the protocol behavior.

5. The method of claim 1 wherein the TSA engine module
includes a state machine configured to execute the at least one
instruction sequence.

6. The method of claim 1 wherein the native protocol
includes acommunication protocol or an application protocol
utilized by the DUT.

7. The method of claim 1 wherein the TSA module utilizes
aprotocol library module to convert the received packet from
the DUT into the TSA protocol command.

US 9,329,960 B2

11

8. The method of claim 1 wherein the TSA engine module
is configured to process a second TS A protocol command that
is converted from a second command associated with a sec-
ond native protocol command from a second DUT in the same
manner as the TSA protocol command, wherein the TSA
protocol command is identical to the second TSA protocol
command.
9. A system for utilizing abstracted user-defined data to
conduct network protocol testing, the system comprising:
an test system abstraction (TSA) module configured to
receive, from a device under test (DUT), a packet con-
taining a command that is associated with a native pro-
tocol and to convert the command included in the
received packet into a TSA protocol command; and

aTSA engine module configure to process the TSA proto-
col command that is provisioned with at least one
instruction sequence enabling the TS A engine module to
emulate a network test device and to generate a TSA
protocol command response in accordance with proto-
col behavior specified by the at least one instruction
sequence.

10. The system of claim 9 wherein the TSA module is
further configured to convert the TSA protocol command
response into a response command associated with the native
protocol.

11. The system of claim 9 wherein the at least one instruc-
tion sequence is provisioned on the TSA engine module via
the TSA module.

12. The system of claim 9 wherein the at least one instruc-
tion sequence is used by the TS A engine to generate a network
test application that establishes the protocol behavior.

13. The system of claim 9 wherein the TSA engine module
includes a state machine configured to execute the at least one
instruction sequence.

14. The system of claim 9 wherein the native protocol
includes acommunication protocol or an application protocol
utilized by the DUT.

15. The system of claim 9 wherein the TSA module is
further configured to utilize a protocol library module to
convert the received packet from the DUT into the TSA
protocol command.

10

15

20

25

30

35

12

16. The system of claim 9 wherein the TSA engine module
is further configured to process a second TSA protocol com-
mand that is converted from a second command associated
with a second native protocol command from a second DUT
in the same manner as the TSA protocol command, wherein
the TSA protocol command is identical to the second TSA
protocol command.

17. A non-transitory computer readable medium having
stored thereon executable instructions that when executed by
the processor of a computer control the computer to perform
steps comprising:

receiving, by a test system abstraction (TSA) module from

a SUT, a packet associated with a native protocol;
converting the received packet into a TSA protocol com-
mand;

processing the TSA protocol command at a TSA engine

module that is provisioned with at least one instruction
sequence enabling the TSA engine module to emulate a
network test device; and

generating, by the TSA engine module, a TSA protocol

command response in accordance with protocol behav-
ior specified by the at least one instruction sequence.

18. The non-transitory computer readable medium of claim
17 wherein the at least one instruction sequence is provi-
sioned on the TSA engine module via the TSA module.

19. The non-transitory computer readable medium of claim
17 wherein the at least one instruction sequence is used by the
TSA engine to generate a network test application that estab-
lishes the protocol behavior.

20. The non-transitory computer readable medium of claim
17 wherein the TSA engine module is configured to process a
second TSA protocol command that is converted from a sec-
ond command associated with a second native protocol com-
mand from a second DUT in the same manner as the TSA
protocol command, wherein the TSA protocol command is
identical to the second TSA protocol command.

#* #* #* #* #*

